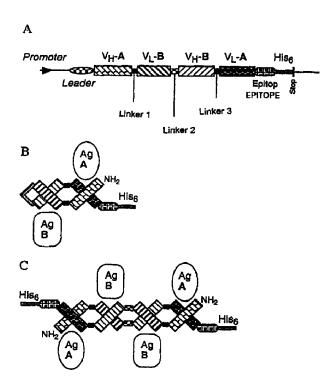
(12) (19) (CA) Demande-Application



(21) (A1) **2,331,641**

(86) 1999/05/05 (87) 1999/11/11

(72) LITTLE, MELVYN, DE

- (72) KIPRIYANOV, SERGEJ, DE
- (71) DEUTSCHES KREBSFORSCHUNGSZENTRUM STIFTUNG DES ÖFFENTLICHEN RECHTS, DE
- (51) Int.Cl. 6 C07K 16/00, C12N 15/63, G01N 33/53, A61K 39/395, C07K 16/28
- (30) 1998/05/05 (198 19 846.9) DE
- (54) CONSTRUCTIONS D'ANTICORPS MULTIVALENTES
- (54) MULTIVALENT ANTIBODY CONSTRUCTS

(57) La présente invention concerne une construction d'anticorps F_v multivalente, comportant au moins quatre domaines variables qui sont reliés l'un à l'autre par l'intermédiaire des segments peptidiques 1, 2 et 3. L'invention concerne en outre des plasmides d'expression qui codent pour une telle construction d'anticorps F_v , ainsi qu'un procédé de réalisation des constructions d'anticorps F_v et leur utilisation.

(57) The invention relates to a multivalent F_v antibody construct comprising at least four variable domains which are connected to one another via peptide linkers 1, 2 and 3. The invention also relates to expression plasmids which code for such an F_v antibody construct. In addition, the invention relates to a method for producing the F_v antibody constructs and to the use thereof.

PCT

WELTORGANISATION FUR GEISTIGES EIGENTUM

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07K 16/00

A2

(11) Internationale Veröffentlichungsnummer: WO 99/57150

(43) Internationales

Veröffentlichungsdatum:

11. November 1999 (11.11.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01350

(22) Internationales Anmeldedatum:

5. Mai 1999 (05.05.99)

(30) Prioritätsdaten:

198 19 846.9

5. Mai 1998 (05.05.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
DEUTSCHES KREBSFORSCHUNGSZENTRUM
STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE];
Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).

(72) Erfinder; und

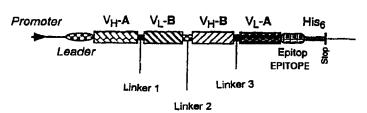
- (75) Erfinder/Anmelder (nur für US): LITTLE, Melvyn [GB/DE]; Fritz-von-Briesen-Strasse 10, D-69151 Neekargemünd (DE). KIPRIYANOV, Sergej [RU/DE]; Furtwänglerstrasse 3, D-69121 Heidelberg (DE).
- (74) Anwalt: HUBER, Bernard; Huber & Schüssler, Truderinger Strasse 246, D-81825 München (DE).

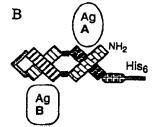
(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

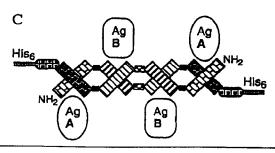
Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: MULTIVALENT ANTIBODY CONSTRUCTS
- (54) Bezeichnung: MULTIVALENTE ANTIKÖRPER-KONSTRUKTE


(57) Abstract


The invention relates to a multivalent F_{ν} antibody construct comprising at least four variable domains which are connected to one another via peptide linkers 1, 2 and 3. The invention also relates to expression plasmids which code for such an F_{ν} antibody construct. In addition, the invention relates to a method for producing the F_{ν} antibody constructs and to the use thereof.


(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein multivalentes F_V -Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind. Ferner betrifft die Erfindung Expressionsplasmide, die für ein solches F_V -Antikörper-Konstrukt codieren, und ein Verfahren zur Herstellung der F_V -Antikörper-Konstrukte sowie deren Verwendung.

A

CA 02331641 2000-11-03

Applicant: Deutsches Krebsforschungszentrum

Attorney's File: K 2675

Multivalent Antibody Constructs

The present invention relates to multivalent F_{ν} antibody constructs, expression plasmids which code for them, and a method for producing the F_{ν} antibody constructs as well as the use thereof.

Natural antibodies are dimers and are therefore referred to as bivalent. They have four variable domains, namely two $V_{\rm H}$ domains and two $V_{\rm L}$ domains. The variable domains serve as binding sites for an antigen, a binding site being formed from a $V_{\rm H}$ domain and a $V_{\rm L}$ domain. Natural antibodies recognize one antigen each, so that they are also referred to as monospecific. Furthermore, they also have constant domains which add to the stability of the natural antibodies. On the other hand, they are also co-responsible for undesired immune responses which result when natural antibodies of various animal species are administered mutually.

In order to avoid such immune responses, antibodies are constructed which lack the constant domains. In particular, these are antibodies which only comprise the variable domains. Such antibodies are designated F_{ν} antibody constructs. They are often available in the form of single-chain monomers paired with one another.

However, it showed that F_{ν} antibody constructs only have little stability. Therefore, their usability for therapeutic purposes is strongly limited.

Thus, it is the object of the present invention to provide an antibody by means of which undesired immune responses can be avoided. Furthermore, it shall have a stability which makes it usable for therapeutic uses.

According to the invention this is achieved by the subject matters defined in the claims.

Therefore, the subject matter of the present invention relates to a multivalent F_{ν} antibody construct which has great stability. Such a construct is suitable for diagnostic and therapeutic purposes.

The present invention is based on the applicant's insights that the stability of an F_{ν} antibody construct can be increased if it is present in the form of a single-chain dimer where the four variable domains are linked with one another via three peptide linkers. The applicant also recognized that the F_{ν} antibody construct folds with itself when the middle peptide linker has a length of about 10 to 30 amino acids. The applicant also recognized that the F_{ν} antibody construct folds with other F_{ν} antibody constructs when the middle peptide linker has a length of about up to 10 amino acids so as to obtain a multimeric, i.e. multivalent, F_{ν} antibody construct. The applicant also realized that the F_{ν} antibody construct can be multispecific.

According to the invention the applicant's insights are utilized to provide a multi-valent F_{ν} antibody construct

which comprises at least four variable domains which are linked with one another via peptide linkers 1, 2 and 3.

The expression " F_v antibody construct" refers to an antibody which has variable domains but no constant domains.

The expression "multivalent F_{ν} antibody construct" refers to an F_v antibody which has several, but at least four, variable domains. This is achieved when the single-chain F. antibody construct folds with itself so as to give four variable domains, or folds with other single-chain F_v antibody constructs. In the latter case, an F_{ν} antibody construct is given which has 8, 12, 16, etc., variable domains. It is favorable for the F_{ν} antibody construct to have four or eight variable domains, i.e. it is bivalent or tetravalent (cf. Fig. 1). Furthermore, the variable domains may be equal or differ from one another, so that the antibody construct recognizes one or several antigens. The antibody construct preferably recognizes one antigens, i.e. it is monospecific and bispecific, respectively. Examples of such antigens are proteins CD19 and CD3.

The expression "peptide linkers 1, 3" refers to a peptide linker adapted to link variable domains of an F_{ν} antibody construct with one another. The peptide linker may contain any amino acids, the amino acids glycine (G), serine (S) and proline (P) being preferred. The peptide linkers 1 and 3 may be equal or differ from each other. Furthermore, the peptide linker may have a length of about 0 to 10 amino acids. In the former case, the peptide linker is only a peptide bond from the COOH residue of one of the variable domains and the NH $_2$ residue of another of the variable domains. The peptide linker preferably comprises the amino acid sequence GG.

The expression "peptide linker 2" refers to a peptide linker adapted to link variable domains of an F_{ν} antibody construct with one another. The peptide linker may contain any amino acids, the amino acids glycine (G), serine (S) and proline (P) being preferred. The peptide linker may also have a length of about 3 to 10 amino acids, in partiuclar 5 amino acids, and most particularly the amino acid sequence GGPGS, which serves for achieving that the single-chain $F_{\boldsymbol{v}}$ antibody single-chain $F_{\mathbf{v}}$ antibody folds with other construct constructs. The peptide linker can also have a length of about 11 to 20 amino acids, in particular 15 to 20 amino acids, and most particularly the amino acid sequence $(G_4S)_4$, which serves for achieving that the single-chain F_{v} antibody construct folds with itself.

An F_v antibody construct according to the invention can be produced by common methods. A method is favorable in which DNAs coding for the peptide linkers 1, 2 and 3 are ligated with DNAs coding for the four variable domains of an F_v antibody construct such that the peptide linkers link the variable domains with one another and the resulting DNA molecule is expressed in an expression plasmid. Reference is made to Examples 1 to 6. As to the expressions " F_v antibody construct" and "peptide linker" reference is made to the above explanations and, by way of supplement, to Maniatis, T. et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory 1982.

DNAs which code for an F_{ν} antibody construct according to the invention also represent a subject matter of the present invention. Furthermore, expression plasmids which contain such DNAs also represent a subject matter of the present invention. Preferred expression plasmids are pDISC3x19-LL,

pDISC3x19-SL, pPIC-DISC-LL, pPIC-DISC-SL, pDISC5-LL and pDISC6-SL. The first four were deposited with the DSMZ (Deutsche Sammlung für Mikroorganismen und Zellen) [Germantype collection for micro-organisms and cells] on April 30, 1998 under DSM 12150, DSM 12149, DSM 12152 and DSM 12151, respectively.

Another subject matter of the present invention relates to a kit, comprising:

- (a) an F_{ν} antibody construct according to the invention, and/or
- (b) an expression plasmid according to the invention, and
- (c) conventional auxiliary agents, such as buffers, solvents and controls.

One or several representatives of the individual components may be present.

The present invention provides a multivalent F_{ν} antibody construct where the variable domains are linked with one another via peptide linkers. Such an antibody construct distinguishes itself in that it contains no parts which can lead to undesired immune reactions. Furthermore, it has great stability. It also enables to bind several antigens simultaneously. Therefore, the F_{ν} antibody construct according to the invention is perfectly adapted to be used not only for diagnostic but also for therapeutic purposes. Such purposes can be seen as regards any disease, in particular a viral, bacterial or tumoral disease.

Brief description of the drawings:

- Fig. 1 shows the genetic organization of an F_{ν} antibody construct (A) according to the invention and schemes for forming a bivalent (B) or tetravalent F_{ν} antibody construct (C). Ag: antigen; His₆: six C-terminal histidine residues; stop: stop codon (TAA); V_{H} and V_{L} : variable region of the heavy and light chains.
- Fig. 2 shows the scheme for the construction of the plasmids pDISC3x19-LL and pDISC3x19-SL. c-myc: sequence coding for an epitope which is recognized by the antibody 9El, His6: sequence which codes for six C-terminal histidine residues; PelB: signal peptide sequence of the bacterial pectate lyase (PelB leader); rbs: ribosome binding site; Stop: stop codon (TAA); V_H and V_L : variable region of the heavy and light chains.
- Fig. 3 shows a diagram of the expression plasmid pDISC3x19-LL. 6xHis: sequence which codes for six C-terminal histidine residues; bla: gene which codes for β -lactamase responsible for ampicillin resistance; bp: base pairs; c-myc: sequence coding for an epitope which is recognized by the 9E10 antibody; ColE1: origin of the DNA replication; f1-IG: intergenic region of the bacteriophage f1; Lac P/O: wt lacoperon promoter/operator; linker 1: sequence which codes for a GlyGly dipeptide linking the V_H and V_L domains; linker 2: sequence coding for a $(Gly_4Ser)_4$ polypeptide which links the hybrid scFv fragments; Pel-B leader: signal peptide sequence of the bacterial pectate lyase; rbs: ribosome binding site; V_H and V_L : variable region of the heavy and light chains.
- Fig. 4 shows a diagram of the expression plasmid pDISC3x19-SL. 6xHis: sequence which codes for six C-terminal histidine

residues; bla: gene which codes for ß-lactamase which is responsible for the ampicillin resistance; bp: base pairs; c-myc: sequence coding for an epitope recognized by the 9E10 of antibody; ColE1: origin DNA replication; intergenic region of the bacteriophage f1; Lac P/O: wt lacoperon promoter/operator: linker 1: sequence which codes for a GlyGly dipeptide which links the V_H and V_L domains; linker 3: sequence which codes for a GlyGlyProGlySer oligopeptide which links the hybrid scFv fragments; Pel-B leader: signal peptide sequence of the bacterial pectate lyase; ribosome binding site; V_H and V_L : variable region of the heavy and light chains.

Fig. 5 shows the nucleotide sequence and the amino acid sequence derived therefrom of the bivalent F_{ν} antibody construct encoded by the expression plasmid pDIS3x19-LL. c-myc epitope: sequence coding for an epitope which is recognized by the antibody 9E10; CDR: region determining the complementarity; framework: framework region; His6 tail: sequence which codes for six C-terminal histidine residues; PelB leader: signal peptide sequence of the bacterial pectate lyase; RBS: ribosome binding site; V_{H} and V_{L} : variable region of the heavy and light chains.

Fig. 6 shows the nucleotide sequence and the derived amino acid sequence of the tetravalent F_{v} antibody construct encoded by the expression plasmid pDISC3x19-SL. epitope: sequence coding for an epitope which is recognized by the 9E10 antibody; CDR: region determining complementarity; framework: framework region; His6 tail: sequence coding for the six C-terminal histidine residues; leader: signal peptide sequence of the bacterial PelB pectate lyase; RBS: ribosome binding site; V_H and V_L : variable region of the heavy and light chains.

Fig. 7 shows the nucleotide sequence and the derived amino acid sequence of a connection between a gene which codes for an α -factor leader sequence and a gene coding for the tetravalent F_{ν} antibody construct in the *Pichia* expression plasmid pPIC-DISC-SL. Alpha-factor signal: leader peptide sequence of the *Saccharomyces cerevisiae-* α factor secretion signal; V_{H} : variable region of the heavy chain. Rhombs indicate the signal cleaving sites.

Fig. 8 shows the nucleotide sequence and the derived amino acid sequence of a connection between a gene coding for an α -factor leader sequence and a gene which codes for the bivalent F_{ν} antibody construct in the *Pichia* expression plasmid pPIC-DISC-LL. Alpha-factor signal: leader peptide sequence of the *Saccharomyces cerevisiae*- α factor secretion signal; V_{H} : variable region of the heavy chain. Rhombs show the signal cleaving sites.

Fig. 9 shows a diagram of the expression plasmid pDISC5-LL. 6xHis: sequence coding for six C-terminal histidine residues; bla: gene which codes for ß-lactamase responsible for ampicillin resistance; bp: base pairs; c-myc: sequence coding for an epitope which is recognized by the 9E10 antibody; hok-sok: plasmid-stabilizing DNA locus; LacI: gene which codes for the Lac repressor; Lac P/O: wt lac-operonpromoter/operator; LacZ': gene which codes for the α -peptide of ß-galactosidase; linker 1: sequence which codes for a GlyGly dipeptide connecting the V_H and V_L domains; linker 2: sequence which codes for a (Gly4Ser)4 polypeptide linking the hybrid scFv fragments; M13 IG: intergenic region of the M13 bacteriophage; pBR322ori: origin of DNA replication; Pel-B leader: signal peptide sequence of the bacterial pectate lyase; rbs: ribosome binding site which originates from the E. coli lacZ gene (lacZ), from the bacteriophage T7 gene 10 (T7g10) or from the $E.\ coli$ skp gene (skp); skp: gene which codes for the bacterial periplasmic factor Skp/OmpH; tHP: strong transcription terminator; tIPP: transcription terminator; V_H and V_L : variable region of the heavy and light chains.

Fig. 10 shows a diagram of the expression plasmid pDISC6-SL. 6xHis: sequence which codes for six C-terminal histidine residues; bla: gene which codes for ß-lactamase responsible for ampicillin resistance; bp: base pairs: c-myc: sequence coding for an epitope which is recognized by the 9E10 antibody; hok-sok: plasmid-stabilized DNA locus; LacI: gene which codes for the Lac repressor; Lac P/O: wt lac-operon promoter/operator; LacZ': gene which codes for the α -peptide of ß-galactosidase; linker 1: sequence which codes for a GlyGly dipeptide which links the V_H and V_L domains; linker 3: sequence which codes for a GlyGlyProGlySer oligopeptide linking the hybrid scFv fragments: M13 IG: intergenic region bacteriophage; pBR322ori: M13 origin replication; Pel-B leader: signal peptide sequence of the bacterial pectate lyase; rbs: ribosome binding originating from the E. coli lacZ gene (lacZ), from the bacteriophage T7 gene 10 (T7g10) or from the E. coli skp (skp); skp: gene which codes for the bacterial periplasmic factor Skp/OmpH; tHP: strong transcription terminator; tIPP: transcription terminator; V_H variable region of the heavy and light chains.

The invention is explained by the below examples.

Example 1: Construction of the plasmids pDISC3x19-LL and $pDISC3x19-SL \ \, \text{for the expression of bivalent,}$ $bispecific \ \, \text{and/or tetravalent, bispecific } \, F_v$ antibody constructs in bacteria

The plasmids pHOG-lphaCD19 and pHOG-dmOKT3 which code for the scFv fragments derived from the hybridoma HD37 which is specific to human CD19 (Kipriyanov et al., 1996, J.-Immunol. Meth. 196, 51-62) and from the hybridoma OKT3 which is specific to human CD3 (Kipriyanov et al., 1997, Protein 445-453), respectively, were used for construction of expression plasmids for a single-chain F_{ν} antibody construct. A PCR fragment 1 of the $V_{\rm H}$ domain of anti-CD19, followed by a segment which codes for a GlyGly DP1, using the primers linker, was produced TCACACAGAATTC-TTAGATCTATTAAAGAGGAGAAATTAACC, and DP2, AGCACACGATATCACCGCCAAGCTTGGGTGTTGTTTTGGC (cf. Fig. 2). PCR fragment 1 was cleaved by EcoRI and EcoRV and ligated with the EcoRI/EcoRV-linearized plasmid pHOG-dmOKT3 so as to produce the vector pHOG19-3. The PCR fragment 2 of the $V_{\scriptscriptstyle L}$ domain of anti-CD19, followed by a segment which codes for a c-myc epitope and a hexahistidinyl tail, was produced using the primers DP3, 5'-AGCACACAAGCTTGGCGGTGATATCTTGCTCACCCAAAC-TCCA, and DP4, 5'-AGCACACTCTAGAGACACACAGATCTTTAGTGATGGTGAT-GGTGATGTGAGTTTAGG. The PCR fragment 2 was cleaved by HindIII XbaI and ligated with the HIndIII/XbaI-linearized plasmid pHOG-dmOKT3 so as to obtain the vector pHOG3-19 (cf. Fig. 2). The gene coding for the hybrid scFv-3-19 in the plasmid pHOG3-19 was amplified by means of PCR with the Bi3sk, 5'-CAGCCGGCCATGGCGCAGGTGCAACTGCAGCAG either Li-1, 5'-TATATACTGCAGCTGCACCTGGCTACCACCACCACCGGAGCCG-for the production of a long flexible (Gly₄Ser)₄ inter-scFV linker (PCR fragment 3, cf. Fig. 2) or Li-2, 5'-TATATA-

CTGCAGCTGCACCTGCGACCCTGGGCCACCAGCGGCCGCAGCATCAGCCCG, for the production of a short rigid GGPGS linker (PCR fragment 4, cf. Fig. 2). The expression plasmids pDISC3x19-LL and pDISC3x19-SL were constructed by ligating the NcoI/PvuII restriction fragment from pHOG19-3, comprising the vector framework and the NcoI/PvuII-cleaved PCR fragments 3 and 4, respectively (cf. Figs. 3, 4). The complete nucleotide and protein sequences of the bivalent and tetravalent F_{ν} antibody constructs are indicated in Figs 5 and 6, respectively.

(A) Construction of pPIC-DISC-SL

The vector pPICZαA (Invitrogen BV, Leek, Netherlands) the expression and secretion of recombinant proteins in the yeast Pichia pastoris was used as a starting material. It contains a gene which codes for the Saccharomyces cerevisiae α -factor secretion signal, followed by a polylinker. secretion of this vector is based on the dominant selectable marker, ZeocinTM which is bifunctional in both *Pichia* and E. coli. The gene which codes for the tetravalent F_v antibody construct (scDia-SL) was amplified by means of PCR by the template pDISC3x19-SL using the primers 5-PIC, CCGTGAATTCCAGGTGCAACTGCAGCAGTCTGGGGCTGAACTGGC, and pSEXBn 5'-GGTCGACGTTAACCGACAAACAACAGATAAAACG. The resulting product was cleaved by EcoRI and XbaI and ligated in EcoRI/XbaI-linearized pPICZ αA . The expression plasmid pPIC-DISC-SL was obtained. The nucleotide and protein sequences of the tetravalent F_{ν} antibody construct are shown in Fig. 7.

(B) Construction of pPIC-DISC-LL

The construction of pPIC-DISC-LL was carried out on the basis of pPIC2 α A (Invitrogen BV, Leek, Netherlands) and pDISC3x19-LL (cf. Fig. 3). The plasmid-DNA pPIC2 α A was cleaved by EcoRI. The overhanging 5'-ends were filled using a Klenow fragment of the *E. coli* DNA polymerase I. The resulting DNA was cleaved by XbaI, and the large fragment comprising the pPIC vector was isolated. Analogous thereto the DNA of pDISC3x19-LL was cleaved by NcoI and treated with a Klenow fragment. Following the cleavage using XbaI a small fragment, comprising a gene coding for the bivalent F_{ν} antibody, was isolated. Its ligation with a pPIC-derived vector-DNA resulted in the plasmid pPIC-DISC-LL. The nucleotide and protein sequences of the bivalent F_{ν} antibody construct are shown in Fig. 8.

Example 3: Expression of the tetravalent and/or bivalent F_v antibody construct in bacteria

E. coli XL1-blue cells (Strategene, La Jolla, CA) which had been transformed with the expression plasmids pDISC3x19-LL and pDISC3x19-SL, respectively, were cultured overnight in 2xYT medium with 50 μ g/ml ampicillin and 100 mM glucose (2xYT_{Ga}) at 37°C. 1:50 dilutions of the overnight cultures in 2xYT_{GA} were cultured as flask cultures at 37°C while shaking with 200 rpm. When the cultures had reached an OD₆₀₀ value of 0.8, the bacteria were pelleted by 10-minute centrifugation with 1500 g at 20°C and resuspended in the same volume of a fresh 2xYT medium containing 50 μ g/ml ampicillin and 0.4 M saccharose. IPTG was added up to a

final concentration of 0.1 mM, and the growth was continued at room temperature (20-22°C) for 18 - 20 h. The cells were harvested by 10-minute centrifugation with 5000 g at $4\,^{\circ}\text{C}$. The culture supernatant was held back and stored on ice. In order to isolate the soluble periplasmic proteins, the pelleted bacteria were resuspended in 5 % of the initial volume of ice-cold 50 mM Tris-HCl, 20 % saccharose, 1 mM EDTA, pH 8.0. Following 1 hour of incubation on -ice with occasional stirring the spheroplasts were centrifuged with 30,000 g at 4°C for 30 minutes, the soluble periplasmic extract being obtained as supernatant and the spheroplasts with the insoluble periplasmic material being obtained as pellet. The culture supernatant and the soluble periplasmic further and clarified by combined extract were centrifugation (30,000 g, 4°C, 40 min.). The recombinant product was concentrated by ammonium sulfate precipitation concentration 70 응 saturation). The protein (final precipitate was obtained by centrifugation (10,000 g, 4°C, 40 min.) and dissolved in 10 % of the initial volume of 50 mM Tris-HCl, 1 M NaCl, pH 7.0. An immobilized metal affinity chromatography (IMAC) was carried out at 4°C using a 5 ml column of chelating sepharose (Pharmacia) which was charged with Cu^{2+} and had been equilibrated with 50 mM Tris-HCl, 1 M NaCl, pH 7.0 (starting buffer). The sample was loaded by passing it over the column. It was then washed with twenty column volumes of starting buffer, followed by starting buffer with 50 mM imidazole until the absorption at 280 nm $\,$ of the effluent was at a minimum (about thirty column volumes). The absorbed material was eluted with 50 mM Tris-HCl, 1 M NaCl, 250 mM imidazole, pH 7.0.

The protein concentrations were determined with the Bradford dye binding test (1976, Anal. Biochem. 72, 248-254) using the Bio-Rad (Munich, Germany) protein assay kit. The

concentrations of the purified tetravalent and bivalent F_{ν} antibody constructs were determined from the A_{280} values using the extinction coefficients $\epsilon^{lmg/ml}$ = 1.96 and 1.93, respectively.

Example 4: Expression of the tetravalent and/or bivalent antibody construct in the yeast Pichia pastoris

Competent P. pastoris GS155 cells (Invitrogen) were electroporated in the presence of 10 μg plasmid-DNA of pPIC-DISC-LL and pPIC-DISC-SL, respectively, which had been linearized with SacI. The transformants were selected for 3 days at 30°C on YPD plates containing 100 $\mu g/ml$ ZeocinTM. The clones which secreted the bivalent and/or tetravalent F_{ν} antibody constructs were selected by plate screening using an anti-c-myc-mAk 9E10 (IC Chemikalien, Ismaning, Germany).

For the expression of the bivalent F_{ν} antibody constructs and tetravalent F_{ν} antibody constructs, respectively, the clones were cultured in YPD medium in shaking flasks for 2 days at 30°C with stirring. The cells were centrifuged resuspended in the same volume of the medium containing methanol and incubated for another 3 days at 30°C with stirring. The supernatants were obtained after the centrifugation. The recombinant product was isolated by ammonium sulfate precipitation, followed by IMAC as described above.

Example 5: Characterization of the tetravalent F_{ν} antibody construct and bivalent F_{ν} antibody construct, respectively,

(A) Size exclusion chromatography

An analytical gel filtration of the F_{ν} antibody constructs was carried out in PBS using a superdex 200-HR10/30 column (Pharmacia). The sample volume and the flow rate were 200 μ l/min and 0.5 ml/min, respectively. The column was calibrated with high-molecular and low-molecular gel filtration calibration kits (Pharmacia).

(B) Flow cytometry

The human CD3+/CD19-acute T-cell leukemia line Jurkat and the CD19⁺/CD3⁻ B-cell line JOK-1 were used for flow cytometrie. 5×10^5 cells in 50 μ l RPMI 1640 medium (GIBCO BRL, Eggestein, Germany) which was supplemented with 10 % FCS and 0.1 % sodium azide (referred to as complete medium) were incubated with 100 μl of the F_{ν} antibody preparations for 45 minutes on ice. After washing using the complete medium the cells were incubated with 100 μ l 10 μ g/ml anti-cmyc-Mak 9E10 (IC Chemikalien) in the same buffer for 45 min on ice. After a second wash cycle, the cells were incubated with 100 µl of the FITC-labeled goat-anti-mouse-IgG (GIBCO BRL) under the same conditions as before. The cells were then washed again and resuspended in 100 µl 1 µg/ml propidium iodide solution (Sigma, Deisenhofen, Germany) in complete medium with the exclusion of dead cells. relative fluorescence of the stained cells was measured using a FACScan flow cytometer (Becton Dickinson, Mountain View, CA).

(C) Cytotoxicity test

The CD19-expressing Burkitt lymphoma cell line Raji and Namalwa were used as target cells. The cells were incubated in RPMI 1640 (GIBCO BRL) which was supplemented with 10 %

heat-inactivated FCS (GIBCO BRL), 2 mM glutamine and 1 mM pyruvate, at 37° C in a dampened atmosphere with $7.5 \% CO_2$. The cytotoxic T-cell tests were carried out in RPMI-1640 medium supplemented with 10 % FCS, 10 mM HEPES, glutamine, 1 mM pyruvate and 0.05 mM 2-ME. The cytotoxic activity was evaluated using a standard[51Cr] release test; 2×10^6 target cells were labeled with 200 $\mu \text{Ci Na}[^{51}\text{Cr}]O_4$ (Amersham-Buchler, Braunschweig, Germany) and washed 4 times and then resuspended in medium in a concentration of 2 \times $10^5/\mathrm{ml}$. The effector cells were adjusted to a concentration of 5 x $10^6/\text{ml}$. Increasing amounts of CTLs in 100 μ l were titrated to 10^4 target cells/well or cavity in 50 μl . 50 μl antibodies were added to each well. The entire test was prepared three times and incubated at 37°C for 4 h. 100 μl of the supernatant were collected and tested for [51Cr] release in a gamma counter (Cobra Auto Gamma; Canberra maximum release Packard, Dreieich, Germany). The determined by incubation of the target cells in 10 % SDS, and the spontaneous release was determined by incubation of the cells in medium alone. The specific lysis (%) was spontaneous (experimental release calculated as: release) / (maximum release - spontaneous release) x 100.

Example 6: Construction of the plasmids pDISC5-LL and pDISC5-SL for the expression of bivalent, bispecific and/or tetravalent, bispecific \mathbf{F}_v antibody constructs in bacteria by high cell density fermentation

Expression vectors were prepared which contained the hok/sok plasmid-free cell suicide system and a gene which codes for the Skp/OmpH periplasmic factor for a greater production of recombinant antibodies. The skp gene was amplified by PCR using the primers skp-1, 5'-CGA ATT CTT AAG ATA AGA AGG AGT

TTA TTG TGA AAA AGT GGT TAT TAG CTG CAG G and skp-2, 5'-CGA ATT AAG CTT CAT TAT TTA ACC TGT TTC AGT ACG TCG G using the plasmid pGAH317 (Holck and Kleppe, 1988, Gene 67, 117-124). The resulting PCR fragment was cleaved by AflII and HindIII and inserted in the AflII/HindIII-linearized plasmid pHKK (Horn et al., 1996, Appl. Microbiol. Biotechnol. 46, 524-532) so as to obtain the vector pSKK. The genes obtained in the plasmids pDISC3x19-LL and pDISC3x19-SL and coding for the scFv antibody constructs were amplified by means of the primers fe-1, 5'-CGA ATT TCT AGA TAA GAA GGA GAA ATT AAC CAT GAA ATA CC and fe-2, 5'-CGA ATT CTT AAG CTA TTA GTG ATG GTG ATG GTG ATG TGA G. The XbaI/AflII-cleaved PCR fragments were inserted in pSKK before the skp insert so as to obtain the expression plasmids pDISC5-LL and pDISC6-SL, respectively, which contain tri-cistronic operons under the control of the lac promoter/operator system (cf. figs. 9, 10).

SEQUENCE RECORD

- (1) GENERAL INDICATIONS:
 - (i) APPLICANT:
 - (A) NAME: Deutsches Krebsforschungszentrum
 - (B) STREET: Im Neuenheimer Feld 280
 - (C) TOWN: Heidelberg
 - (E) COUNTRY: Germany
 - (F) POSTAL CODE: 69120
 - (ii) TITLE OF THE INVENTION: Multivalent Antibody Constructs
 - (iii) NUMBER OF SEQUENCES: 17
 - (iv) COMPUTER-READABLE VERSION:
 - (A) DATA CARRIER: floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, version #1.30 (EPA)
- (2) INDICATIONS AS TO SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1698 base pairs
 - (B) KIND: nucleotide
 - (C) STRAND TYPE: single strand
 - (D) TOPOLOGY: linear
 - (ii) KIND OF MOLECULE: genome DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTISENSE: no
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) POSITION: 28..1689
 - (ix) FEATURE:
 - (A) NAME/KEY: mat peptide
 - (B) POSITION: 28..1689
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GCC Ala	GCT Ala 10	GGC Gly	TTG Leu	CTG Leu	CTG Leu	CTG Leu 15	GCA Ala	GCT Ala	CAG Gln	CCG Pro	GCC Ala 20	ATG Met	GCG Ala	CAG Gln	GTG Val	99
CAA Gln 25	CTG Leu	CAG Gln	CAG Gln	TCT Ser	GGG Gly 30	GCT Ala	GAA Glu	CTG Leu	GCA Ala	AGA Arg 35	CCT Pro	GGG Gly	GCC Ala	TCA Ser	GTG Val 40	147
AAG Lys	ATG Met	TCC Ser	TGC Cys	AAG Lys 45	GCT Ala	TCT Ser	GGC Gly	TAC Tyr	ACC Thr 50	TTT Phe	ACT Thr	AGG Arg	TAC Tyr	ACG Thr 55	ATG Met-	195
CAC His	TGG Trp	GTA Val	AAA Lys 60	CAG Gln	AGG Arg	CCT Pro	GGA Gly	CAG Gln 65	GGT Gly	CTG Leu	GAA Glu	TGG Trp	ATT Ile 70	GGA Gly	TAC Tyr	243
ATT Ile	AAT Asn	CCT Pro 75	AGC Ser	CGT Arg	GGT Gly	TAT Tyr	ACT Thr 80	AAT Asn	TAC Tyr	AAT Asn	CAG Gln	AAG Lys 85	TTC Phe	AAG Lys	GAC Asp	291
AAG Lys	GCC Ala 90	ACA Thr	TTG Leu	ACT Thr	ACA Thr	GAC Asp 95	AAA Lys	TCC Ser	TCC Ser	AGC Ser	ACA Thr 100	GCC Ala	TAC Tyr	ATG Met	CAA Gln	339
							GAC Asp									387
TAT Tyr	TAT Tyr	GAT Asp	GAT Asp	CAT His 125	TAC Tyr	AGC Ser	CTT Leu	GAC Asp	TAC Tyr 130	TGG Trp	GGC Gly	CAA Gln	GGC Gly	ACC Thr 135	ACT Thr	435
CTC Leu	ACA Thr	GTC Val	TCC Ser 140	TCA Ser	GCC Ala	AAA Lys	ACA Thr	ACA Thr 145	CCC Pro	AAG Lys	CTT Leu	GGC Gly	GGT Gly 150	GAT Asp	ATC Ile	483
TTG Leu	CTC Leu	ACC Thr 155	CAA Gln	ACT Thr	CCA Pro	GCT Ala	TCT Ser 160	TTG Leu	GCT Ala	GTG Val	TCT Ser	CTA Leu 165	GGG Gly	CAG Gln	AGG Arg	531
GCC Ala	ACC Thr 170	ATC Ile	TCC Ser	TGC Cys	AAG Lys	GCC Ala 175	AGC Ser	CAA Gln	AGT Ser	GTT Val	GAT Asp 180	TAT Tyr	GAT Asp	GGT Gly	GAT Asp	579
AGT Ser 185	TAT Tyr	TTG Leu	AAC Asn	TGG Trp	TAC Tyr 190	CAA Gln	CAG Gln	ATT Ile	CCA Pro	GGA Gly 195	CAG Gln	CCA Pro	CCC Pro	AAA Lys	CTC Leu 200	627
CTC Leu	ATC Ile	TAT Tyr	GAT Asp	GCA Ala 205	TCC Ser	AAT Asn	CTA Leu	GTT Val	TCT Ser 210	GGG Gly	ATC Ile	CCA Pro	CCC Pro	AGG Arg 215	TTT Phe	675
AGT Ser	GGC Gly	AGT Ser	GGG Gly 220	TCT Ser	GGG Gly	ACA Thr	GAC Asp	TTC Phe 225	ACC Thr	CTC Leu	AAC Asn	ATC Ile	CAT His 230	CCT Pro	GTG Val	723

GAG Glu	AAG Lys	GTG Val 235	GAT Asp	GCT Ala	GCA Ala	ACC Thr	TAT Tyr 240	CAC His	TGT Cys	CAG Gln	CAA Gln	AGT Ser 245	ACT Thr	GAG Glu	GAT Asp	771
												AAA Lys				819
GCT Ala 265	GCG Ala	GCC Ala	GCT Ala	GGT Gly	GGT Gly 270	GGT Gly	GGT Gly	TCT Ser	GGC Gly	GGC Gly 275	GGT Gly	GGT Gly	AGC Ser	GGT Gly	GGT Gly - 280	867
												CAG Gln				915
												TCC Ser				963
												GTG Val 325				1011
					_							CCT Pro				1059
												ACT Thr				1107
												AGC Ser				1155
												ACT Thr				1203
												GGA Gly 405				1251
												GGT Gly				1299
												GGG Gly				1347
												ATG Met				1395

					TCC Ser						1443
					CCT Pro						1491
					ATC Ile 495					GCC Ala.	1539
					TGG Trp			-	-	 TCG Ser . 520	1587
					AAC Asn						1635
					GAA Glu						1683
CAT His	CAC His	TAAT	CTAG	A							1698

(2) INDICATIONS AS TO ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 554 amino acids
 - (B) KIND: amino acid
 - (D) TOPOLOGY: linear
- (ii) KIND OF MOLECULE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10 15

Ala Gl
n Pro Ala Met Ala Gl
n Val Gl
n Leu Gl
n Gl
n Ser Gly Ala Glu 20 2530

Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly $$\tt 35$$

Tyr Thr Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly 50 55 60

Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr 65 70 75 80

Asn Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Ser Leu Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Leu Leu Thr Gln Thr Pro Ala Ser 155 Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu 200 Val Ser Gly Ile Pro Pro Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr 230 His Cys Gln Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr 245 250 255Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr 305 310 315 320 Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe 345 Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr

 Met
 Gln
 Leu
 Ser
 Leu
 Ala
 Ser
 Glu
 Asp
 Ser
 Ala
 Val
 Glu
 Asp
 Phe
 Cys

 Ala
 Arg
 Arg
 Arg
 Glu
 Thr
 Thr
 Thr
 Val
 Gly
 Arg
 Tyr
 Tyr
 Ala
 Met
 Asp
 Ala
 Asp
 Ala
 Asp
 Ala
 Asp
 Ala
 Asp
 Arg
 Thr
 Val
 Thr
 Val
 Ser
 Ser
 Ala
 Lys
 Thr
 Thr
 Ala
 Ala
 Ilup
 And
 And

(2) INDICATIONS AS TO ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1653 base pairs

- (B) KIND: nucleotide
- (C) STRAND TYPE: single strand
- (D) TOPOLOGY: linear
- (ii) KIND OF MOLECULE: genome DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTISENSE: no
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) POSITION: 28..1644

(ix) FEATURE:

	(12	(<i>I</i>	3)	NAME POSI	/KEY	1: 28	31	644								
	,	•	EQUEI													
G.	AATTC	ATTA	AAGA	.GGAG	AA A	A_ATT.								CG G		5:
G(A)	la Al	T GG(a Gly 0	TTG / Leu	CTG Leu	CTG Leu	CTG Leu 15	Ala	GCT Ala	CAG Gln	CCG Pro	GCC Ala 20	Met	GCG Ala	CAG Gln	GTG Val	. 99
G:	AA CT In Le 25	G CAC u Glr	G CAG	TCT Ser	GGG Gly 30	Ala	GAA Glu	CTG Leu	GCA Ala	AGA Arg 35	Pro	GGG Gly	GCC Ala	TCA Ser	GTG Val 40	147
		G TCC t Ser														195
		G GTA p Val														243
		T CCT n Pro 75	Ser													291
AA Ly	G GC s Al	C ACA a Thr 0	TTG Leu	ACT Thr	ACA Thr	GAC Asp 95	AAA Lys	TCC Ser	TCC Ser	AGC Ser	ACA Thr 100	GCC Ala	TAC Tyr	ATG Met	CAA Gln	339
CT Le 10	u Se:	C AGC r Ser	CTG Leu	ACA Thr	TCT Ser 110	GAG Glu	GAC Asp	TCT Ser	GCA Ala	GTC Val 115	TAT Tyr	TAC Tyr	TGT Cys	GCA Ala	AGA Arg 120	387
TA Ty	T TAT	r GAT c Asp	GAT Asp	CAT His 125	TAC Tyr	AGC Ser	CTT Leu	GAC Asp	TAC Tyr 130	TGG Trp	GGC Gly	CAA Gln	GGC Gly	ACC Thr 135	ACT Thr	435
		A GTC C Val														483
TT Le	G CT(u Lei	ACC Thr 155	CAA Gln	ACT Thr	CCA Pro	GCT Ala	TCT Ser 160	TTG Leu	GCT Ala	GTG Val	TCT Ser	CTA Leu 165	GGG Gly	CAG Gln	AGG Arg	531
GC Al	C AC(a Thi 17(ATC	TCC Ser	TGC Cys	AAG Lys	GCC Ala 175	AGC Ser	CAA Gln	AGT Ser	GTT Val	GAT Asp 180	TAT Tyr	GAT Asp	GGT Gly	GAT Asp	579

AGT Ser 185	TAT Tyr	TTG Leu	AAC Asn	TGG Trp	TAC Tyr 190	CAA Gln	CAG Gln	ATT Ile	CCA Pro	GGA Gly 195	CAG Gln	CCA Pro	CCC Pro	AAA Lys	CTC Leu 200	627	
CTC Leu	ATC Ile	TAT Tyr	GAT Asp	GCA Ala 205	TCC Ser	AAT Asn	CTA Leu	GTT Val	TCT Ser 210	GGG Gly	ATC Ile	CCA Pro	CCC Pro	AGG Arg 215	TTT Phe	675	
AGT Ser	GGC Gly	AGT Ser	GGG Gly 220	TCT Ser	GGG Gly	ACA Thr	GAC Asp	TTC Phe 225	ACC Thr	CTC Leu	AAC Asn	ATC Ile	CAT His 230	CCT Pro	GTG Val	723	
GAG Glu	AAG Lys	GTG Val 235	GAT Asp	GCT Ala	GCA Ala	ACC Thr	TAT Tyr 240	CAC His	TGT Cys	CAG Gln	CAA Gln	AGT Ser 245	ACT Thr	GAG Glu	GAT Asp	771	
CCG Pro	TGG Trp 250	ACG Thr	TTC Phe	GGT Gly	GGA Gly	GGC Gly 255	ACC Thr	AAG Lys	CTG Leu	GAA Glu	ATC Ile 260	AAA Lys	CGG Arg	GCT Ala	GAT Asp	819	
				GGT Gly												867	
GGG Gly	GCT Ala	GAG Glu	CTG Leu	GTG Val 285	AGG Arg	CCT Pro	GGG Gly	TCC Ser	TCA Ser 290	GTG Val	AAG Lys	ATT Ile	TCC Ser	TGC Cys 295	AAG Lys	915	
GCT Ala	TCT Ser	GGC Gly	TAT Tyr 300	GCA Ala	TTC Phe	AGT Ser	AGC Ser	TAC Tyr 305	TGG Trp	ATG Met	AAC Asn	TGG Trp	GTG Val 310	AAG Lys	CAG Gln	963	
				GGT Gly												1011	
				TAC Tyr												1059	
				TCC Ser												1107	-
				GCG Ala 365												1155	
GTA Val	GGC Gly	CGT Arg	TAT Tyr 380	TAC Tyr	TAT Tyr	GCT Ala	ATG Met	GAC Asp 385	TAC Tyr	TGG Trp	GGT Gly	CAA Gln	GGA Gly 390	ACC Thr	TCA Ser	1203	
GTC Val	Thr	GTC Val 395	TCC Ser	TCA Ser	ĞCC Ala	AAA Lys	ACA Thr 400	ACA Thr	CCC Pro	AAG Lys	CTT Leu	GGC Gly 405	GGT Gly	GAT Asp	ATC Ile	1251	

							GGG Gly		1299
							ATG Met		1347
 							TAT Tyr		1395
							AGT Ser 470		1443
							GAA Glu		1491
							ACG Thr		1539
							CCA Pro		1587
							CAT His		1635
 CAT His	TAAT	CTAG	S A						1653

(2) INDICATIONS AS TO ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 539 amino acids
 - (B) KIND: amino acid
 - (D) TOPOLOGY: linear
- (ii) KIND OF MOLECULE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala 1 $$ 5 $$ 10 $$ 15

Ala Gl
n Pro Ala Met Ala Gl
n Val Gl
n Leu Gl
n Gl
n Ser Gly Ala Glu 25 $$ 30

Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly 35 40 . 45

Tyr Thr Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly 55 Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Ser Leu Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Leu Leu Thr Gln Thr Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser 170 Gln Ser Val Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu 200 Val Ser Gly Ile Pro Pro Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 215 Phe Thr Leu Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Ala Ala Gly Gly Pro Gly 265 Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys 325

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala 345 Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe 360 Cys Ala Arg Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser 425 Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 470 Ser Gly Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn Arg Ala Asp Thr Ala Pro Thr Gly Ser Glu Gln Lys Leu Ile Ser Glu 520 Glu Asp Leu Asn Ser His His His His His

(2) INDICATIONS AS TO ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 57 base pairs
 - (B) KIND: nucleotide
 - (C) STRAND TYPE: single strand
 - (D) TOPOLOGY: linear
- (ii) KIND OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "primer"
- (iii) HYPOTHETICAL: no
- (iv) ANTISENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

TATATACTGC	AGCTGCACCT GCGACCCTGG GCCACCAGCG GCCGCAGCAT CAGCCCG	57
(2) INE (i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) KIND: nucleotide (C) STRAND TYPE: single strand (D) TOPOLOGY: linear	
(iii (iv) (xi)	KIND OF MOLECULE: other nucleic acid (A) DESCRIPTION: /desc = "primer" i) HYPOTHETICAL: no ANTISENSE: no SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	CAGGTGCAAC TGCAGCAGTC TGGGGCTGAA CTGGC	45
(i) (ii) (iii (iv)	CCATIONS AS TO ID NO: 7: SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) KIND: nucleotide (C) STRAND TYPE: single strand (D) TOPOLOGY: linear KIND OF MOLECULE: other nucleic acid (A) DESCRIPTION: /desc = "primer") HYPOTHETICAL: no ANTISENSE: no SEQUENCE DESCRIPTION: SEQ ID NO: 7:	

GGTCGACGTT AACCGACAAA CAACAGATAA AACG

(2)	I	NDIC	CATI	SMC	AS I	O II	ON C	: 8:								
		i)			CE CE											
			(A)		ENGT					rs						
			(B)		IND:				•							
			(C)	S!	ran	D TY	PE:	sin	ale	stra	and					
			(D)		OPOL											
	(ii)	KIN		OM '					DNA						
	(iii)			ETIC			,								
					ISE:										-	
				TURE												
			(A)	N.	AME/	KEY:	CDS	3								-
			(B)		DSIT											
	(ix)	FEA	TURE												
			(A)	NA	AME/	KEY:	mat	per	otid	e						
			(B)		SIT											
	(:	xi)	SEQ		E DE				SEQ	ID	NO:	8:				
ATG	AGA	TTT	CCT	TCA	ATT	TTT	ACT	GCT	GTT	TTA	TTC	GCA	GCA	TCC	TCC	48
met 1	Arg	Pne	Pro	ser 5	Ile	Pne	Thr	Ala	vai 10	Leu	Pne	Ala	Ala	Ser 15	Ser	
_				2					10					10		
GCA	TTA	GCT	GCT	CCA	GTC	AAC	ACT	ACA	ACA	GAA	GAT	GAA	ACG	GCA	CAA	96
Ala	Leu	Ala		Pro	Val	Asn	Thr		Thr	Glu	Asp	Glu		Ala	Gln	
			20					25					30			
Δጥጥ	CCG	GCT	GAA	GCT	GTC	АТС	GGT	ΨАС	ጥሮል	GAT	ፈ ተጉጥ	GAA	GGG	СУТ	ጥጥር	144
Ile	Pro	Ala	Glu	Ala	Val	Ile	Gly	Tyr	Ser	Asp	Leu	Glu	Gly	Asp	Phe	722
		35					40	-		-		45	-	•		
~ » m	O.M.M.	000	C C C C C C C C C C C C C C C C C C C	mmc	001		maa									
GAT Nan	Ual	GCT Ala	G11	Lau	CCA Pro	T.I.I.	TCC	AAC	AGC	ACA	AA'I'	AAC	GGG	ATT	TTG	192
пэр	50	пта	Val	ьеu	FIO	55	261	ASII	Ser	1111	60	ASII	GTĀ	Leu	rea	
TTT	ATA	TAA	ACT	ACT	ATT	GCC	AGC	ATT	GCT	GCT	AAA	GAA	GAA	GGG	GTA	240
	Ile	Asn	Thr	Thr	Ile	Ala	Ser	Ile	Ala		Lys	Glu	Glu	Gly		
65					70					75					80	
TCT	CTC	GAG	AAA	AGA	GAG	GCT	GAA	GCT	GAA	TTC	CAG	GTG	CAA	CTG	CAG	288
Ser	Leu	Glu	Lys	Arg	Glu	Ala	Glu	Ala	Glu	Phe	Gln	Val	Gln	Leu	Gln	200
				85					90					95		
~ » ~	mam	000	COM	~~ ~	ama	003	3.03	O C M	000	000	mo.				m c.c	226
JAG 31n	COT	Clv	GCT Ala	GAA	CTG Leu	GCA Ala	AGA	CCT	GGG	GCC Ala	TCA	GTG	AAG	ATG	TCC	336
	JCI	Gry	100	GIU	neu	пта	Arg	105	GIY	Ата	ser	vaı	110	Met	ser	
		GCT														348
Jys	rys	Ala	Ser													
		115														

- 2) INDICATIONS AS TO ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 116 amino acids
 - (B) KIND: amino acid
 - (D) TOPOLOGY: linear
 - (ii) KIND OF MOLECULE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15

Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp Glu Thr Ala Gln
· 20 25 30

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 35 40 45

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 55 60

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 65 70 75 80

Ser Leu Glu Lys Arg Glu Ala Glu Ala Glu Phe Gln Val Gln Leu Gln 85 90 95

Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser 100 105 110

Cys Lys Ala Ser 115

- (2) INDICATIONS AS TO ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 354 base pairs
 - (B) KIND: nucleotide
 - (C) STRAND TYPE: single strand
 - (D) TOPOLOGY: linear
 - (ii) KIND OF MOLECULE: genome DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTISENSE: no
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) POSITION: 1..354
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) POSITION: 1..354
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

		TTT Phe											48
		GCT Ala											96
		GCT Ala 35										TTC TPhe	144
		GCT Ala											192
		AAT Asn											240
		GAG Glu											288
		CAG Gln											336
		TGC Cys 115											354
)	IND		EQUE	S AS NCE LENG	CHAF	RACT	ERIS	TICS	s				

2

- (B) KIND: amino acid
- (D) TOPOLOGY: linear
- (ii) KIND OF MOLECULE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15

Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp Glu Thr Ala Gln 25

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 35 40 45

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 55 60

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 65 70 75 80

Ser Leu Glu Lys Arg Glu Ala Glu Ala Glu Phe Met Ala Gln Val Gln 85 90 95

Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys 100 105 110

Met Ser Cys Lys Ala Ser 115

- (2) INDICATIONS AS TO ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs
 - (B) KIND: nucleotide
 - (C) STRAND TYPE: single strand
 - (D) TOPOLOGY: linear
 - (ii) KIND OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "primer"
 - (iii) HYPOTHETICAL: no
 - (iv) ANTISENSE: no
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

TCACACAGAA TTCTTAGATC TATTAAAGAG GAGAAATTAA CC

- (2) INDICATIONS AS TO ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) KIND: nucleotide
 - (C) STRAND TYPE: single strand
 - (D) TOPOLOGY: linear
 - (ii) KIND OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "primer"
 - (iii) HYPOTHETICAL: no
 - (iv) ANTISENSE: no
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

AGCACA	ACGAT ATCACCGCCA AGCTTGGGTG TTGTTTTGGC	40
. (2)	<pre>INDICATIONS AS TO ID NO: 14: (i) SEQUENCE CHARACTERISTICS:</pre>	
(2) IN (i	ACAAG CTTGGCGGTG ATATCTTGCT CACCCAAACT CCA DICATIONS AS TO ID NO: 15: (A) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 base pairs (B) KIND: nucleotide (C) STRAND TYPE: single strand (D) TOPOLOGY: linear (i) KIND OF MOLECULE: other nucleic acid (A) DESCRIPTION: /desc = "primer"	43
(i (x AGCACA	ALII) HYPOTHETICAL: no ANTISENSE: no ANTISENSE: no ALII) SEQUENCE DESCRIPTION: SEQ ID NO: 15 ACTOT AGAGACACAC AGATCTTTAG TGATGGTGAT GGTGATGTGA GTTTAGG NDICATIONS AS TO ID NO: 16: i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs	57
	<pre>(B) KIND: nucleotide (C) STRAND TYPE: single strand (D) TOPOLOGY: linear</pre>	

<pre>(ii) KIND OF MOLECULE: other nucleic acid</pre>	33
(2) INDICATIONS AS TO ID NO: 17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 102 base pairs (B) KIND: nucleotide (C) STRAND TYPE: single strand (D) TOPOLOGY: linear (ii) KIND OF MOLECULE: other nucleic acid (A) DESCRIPTION: /desc = "primer" (iii) HYPOTHETICAL: no (iv) ANTISENSE: no (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
TATATACTGC AGCTGCACCT GGCTACCACC ACCACCGGAG CCGCCACCAC CGCTACCACC	60
GCCGCCAGAA CCACCACCAC CAGCGGCCGC AGCATCAGCC CG	102

CA 02331641 2000-11-03

Official File: PCT/DE99/01350

Attorney's File: K 2675

Amended Claims

- 1. A multivalent $F_{\rm v}$ antibody construct having at least four variable domains which are linked with one another via the peptide linkers 1, 2 and 3, wherein the peptide linkers 1 and 3 have 0 to 10 amino acids.
- 2. The F_{ν} antibody construct according to claim 1, wherein the peptide linkers 1 and 3 have the amino acid sequence GG.
- 3. The F_{ν} antibody construct according to claim 1 or 2, wherein the F_{ν} antibody construct is bivalent.
- 4. The F_{ν} antibody construct according to claim 3, wherein the peptide linker 2 has 11 to 20 amino acids.
- 5. The F_v antibody construct according to claim 3 or 4, wherein the peptide linker 2 has the amino acid sequence $(G_4S)_4$.
- 6. The F_{ν} antibody construct according to claim 1 or 2, wherein the F_{ν} antibody construct is tetravalent.
- 7. The $F_{\rm v}$ antibody construct according to claim 6, wherein the peptide linker 2 has 3 to 10 amino acids.

- 8. The $F_{\rm v}$ antibody construct according to claim 6 or 7, wherein the peptide linker 2 comprises the amino acid sequence GGPGS.
- 9. The F_{ν} antibody construct according to any of claims 1 to 8, wherein the F_{ν} antibody construct is multispecific.
- 10. $F_{\rm v}$ antibody construct according to claim 9, wherein the $F_{\rm v}$ antibody construct is bispecific.
- 11. The F_{ν} antibody construct according to any of claims 1 to 8, wherein the F_{ν} antibody construct is monospecific.
- 12. A method of producing the multivalent F_{ν} antibody construct according to any of claims 1 to 11, wherein DNAs coding for the peptide linkers 1, 2 and 3 are ligated with DNAS coding for the four variable domains of an F_{ν} antibody construct such that the peptide linkers link the variable domains with one another and the resulting DNA molecule is expressed in an expression plasmid.
- 13. Expression plasmid coding for the multivalent F_{ν} antibody construct according to any of claims 1 to 11.
- 14. The expression plasmid according to claim 13, namely pDISC3x19-LL.
- 15. The expression plasmid according to claim 13, namely pDISC3x19-SL.
- 16. The expression plasmid according to claim 13, namely pPIC-DISC-LL.

- 17. The expression plasmid according to claim 13, namely pPIC-DISC-SL.
- 18. The expression plasmid according to claim 13, namely pDISC5-LL.
- 19. The expression plasmid according to claim 13, namely pDISC6-SL.
- 20. Use of the multivalent F_{ν} antibody construct according to any of claims 1 to 11 for the diagnosis and/or treatment of diseases.
- 21. Use according to claim 20, wherein the diseases are viral, bacterial or tumoral diseases.

```
EcoRI BRS
                                         PelB leader
     I M K Y I L P T A A A G L L L L A A Q P A M
                                     Frame-H1
                                                                                        VH anti-CD3
    92 CGCAGGTGCAACTGCAGCAGTCTGGGGCTGAACTGGCCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACCTTTTAC
    22 ^{\triangleright}A Q V Q L Q Q S G A E L A R P G A S V K M S C K A S G Y T F T
            CDR-H1 Frame-H2
                                                                                      CDR-H2
   183 TAGGTACACGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGGAATGGATTGGATACATTAATCCTAGCCGTGGTTATAC
    52) RYTMHWVKQRPGQGLEWIGYINPSRGYT
                                                   Frame-H3
  267 TAATTACAATCAGAAGTTCAAGGACAAGGCCACATTGACTACAGACAAATCCTCCAGCACAGCCTACATGCAGCAGCCTGAC
   30 N Y N Q K F K D K A T L T T D K S S S T A Y M Q L S S L T
                                                              CDR-H3
  354 ATCTGAGGACTCTGCAGTCTATTACTGTGCAAGATATTATGATGATCATTACAGGCTTGACTACTGGGGCCAAGGCACCACTCTCA
  109 S E D S A V Y Y C A R Y Y D D H Y S L D Y W G Q G T T L
                                           Linker 1 Frame-L1
                        CH1
  440 CAGTCTCCTCAGCCAAACAACACCCAAGCTTGGGGGGGGATATATCTTGCTCACCCAAACTCCAGCTTCTTTGGCTGTGTGTCTAGGGCAGA
  138 T V S S A K T T P K L G G D I L L T Q T P A S L A 7 S L G Q
                                CDR-L1
  S30 GGGCCACCATCTCCTGCAAGGCCAGCCAAAGTGTTGATTATGATGGTGATAGTTATTTTGAACTGGTACCAACAGATTCCAGGAC
  158 RATISCKASQSVDYDGDSYLNWYQQIPG
                                       CDR-L2
                                                                             Frame-L3
  196 O P P K L L I Y D A S N L V S G I P P R F S G S G S G T D F
                                                                           COR-L3
                                                                                                        Frame-L4
  702 CACCCTCAACATCCATCCTGTGGAGAAGGTGGATGCTGCAACCTATCACTGT<u>CAGCAAAAGTACTGAGGAT</u>CCGTGGACGTTCGGTGGA
  225) T L N I H P 7 E K V D A A T Y H C Q Q S T E D P W T F G G
                                C kacca Noti
                                                                                Linker 2
  790 GGCACCAAGCTGGAAATCAAA<u>CTGGCTGATGCT</u>GCGGCCCCCTGGTGGTGGTGGTTCTGGCGGCGGTGGTAGCGGTGGTGGCGGC
  255) G T K L E I K R A D A A A G G G G S G G G S G G G
                                      Pvull Frame-H1 VH anti-CD19
  874 TCCGGTGGTGGTGGTAGCCAGGTGCAGCTGCAGCAGCTGGGGCCTGAGCTGGGGCCTGGGTGAGCTCCAGTGAAGATTTGCTGCAAGG
  283 S G G G G S Q V Q L Q Q S G A E L V R P G S S V K I S C K
                                    CDR-H1
                                                          Frame-H2
                                                                                                                 CDR-H2
  962 CTTCTGGCTATGCATTCAGTAGCTACTGGATGAACTGGGTGAAGCAGAGGCCTGGACAGGGTCTTGAGTGGATTGGACAGATTTTGGC
  312) A S G Y A F S S Y W M N W V K Q R P G Q G L \equiv W I G Q I
                                                                                 Psti Frame-H3
 1049 CTGGAGATGGTGATACTACTACTACGAAAGTTCAAGGGTAAAGCCACTCTGACTGCAGAAGCGAATCCTCCACCACACCTACA
 341) PGDGDTNYNGKFKGKATLTADESSSTAY
1133 TGCAACTCAGCAGCCTAGCATCTGAGGACTGCGGTCTATTTCTGTGCAAGACGGGAGACTACGACGGTAGGCCGTTATTACTAT
 369 M Q L S S L A S E D S A V Y F C A R R E T T T V G R Y Y Y
Frame-H4 CH1 Linker 1 Frame-L1
1219 <u>GCTATGGACTAC</u>TGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA<u>GCCAAAACAACACCC</u>AAGCTTGGCGGTGATATCGTGCTCACTC
 398 A M D Y W G Q G T S V T V S S A K T T P K L G G D I V L T
        VL anti-CD3
                                                                                CDR-L1
1307-AGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGC\underline{AGTGCCAGGTCAAGTTAAGTTACATGAACTGGAAGTCACCATGAAGTTACATGAACTGGAAGTCACATGAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTCACCATGACCTGCAAGTTACATGAACTGGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGACCTGCAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGGAAGTTACATGAACTGAACTGAACTGAAGTTACATGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAAGTTACATGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAAGTTAAAGTTAACATGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAAGTTAACATGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAAGTTAACATGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACATTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACAACTTGAACATGAACATTGAACATGAACTTGAACATGAACATGAACATGAACATGAACATGAACATTGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACAACATGAACATGAACATGAACATGAACATGAACATGAACATTCAACATTGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACATGAACA
 427) Q S P A I M S A S P G E K V T M T C S A S S S V S Y M N W
                                                                  CDR-L2
                                                                                               Frame-L3
1393 TACCAGCAGAGTCAGGCACCTCCCCCAAAAGATGGATTTAT<u>GACACATCCAAAACTGGGTTCTC</u>GGAGTCCCTCCTCACTTCAGGGGCA
 456) Y Q Q K S G T S P K R W I Y D T S K L A S G V P A H F R G
1481 GTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCGGCATGGAGGCTGAAGATGCTGCCACTTATTACTGCCAGCAGTAGATAA
 485 S G S G T S Y S L T I S G M E A E D A A T Y Y C Q Q W S S N
                        Frame-L4
                                                                                               c-myc epitope
                                                           C kappa
1569 <u>CCCATTCACG</u>TTCGGCTCGGGGACAAAGTTGGAAATAAAC<u>CGGGCTGATACTGCACCAACT</u>GGATCCGAACAAAAGCTGATCTCAG
 514) PFTFGSGTKLEINRADTAPTGSEQKLIS
                                    His5 tail
                                                        Xhal
1655 AAGAAGACCTAAACTCACCATCACCATCACCATCACTAATCTAGA
 543 E E D L N S H H H H H +
```

EcoRI RBS PelB leader Neel
Nool Nool Nool Nool Nool Nool Nool Nool Nool
1) M K Y L L P T A A A G L L L L A A Q P A M
• Frame-H1 VH anti-CD3
92 CGCAGGTGCAACTGCAGCAGTCTGGGGCTGAACTGGCAAACCTGGGGGCTCAGTGAAGATGTCCTGCGAGCAGCTGTGAACTGTCCTAGTGAACTGTTCTAGTGAACTGTCAACTAGTGAACTAGTGAACTGTCAACTAGTGAACTGTCAACTAGTGAACTAGTCAACTAGTGAACTAGTCAACTAGTGAACTAGTCAACTAGTGAACTAGTGAACTAGTCAACTAGTGAACTAGTCAACTAGTGAACTAGTCAACTAGTGAACTAGTAGTGAACTAGTGAACTAGTGAACTAGTAGAACTAGTAGAACTAGAACTAGTGAACTAGAACAACAACAACAACAACAACAACAACAACAACAACAA
22) A Q V Q L Q Q S G A E L A R P G A S V K M S C K A S G Y T F
CDH-H1 Frame-H2 CDR-H2 CDR-H2 183 TAGGTACACGATGCATGCATGCATGCATGCATTACATTA
52 RYTMHWYKQRPGQGLEWIGYINPSRGYT
Frame-H3
267 TAATTACAATCAGAAGTTCAAGGACAAGGCCACATTGACTACAGACAAATCCTCCAGCACACAGCCTACATGCAACTGAGCAGCCTGAG
80 N Y N Q X F X O X A T L T T D X S S T A Y M Q L S S L CCDR-H3 Frame-H4
354 ATCTGAGGACTCTGCAGTCTATTACTGTGCAAGATATTATGATGATGATGATTACAGCCTTGACTACTGCGCCCACACCACTCTCTC
109 SEDSAVYYCARYYDDHYSLDYWGQGTTL
CH1 Linker 1 Frame-L1 VL anti-CD19
440 CAGTOTOCTCAGCCAAAACAACACCATTGGGGGTGATTATTCTTGGCTCAAACTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGA
138 T V S S A K T T F K L G G D I L L T Q T P A S L A V S L G Q CDR-L1 Frame-L2
530 GGGCCACCATCTCCTGCAAGGCCAGCCAAAGTGTTGATTATGATGGTGATAGTTATTTTGAACTGGTACCAACAGATTCCAGGA
168 RATISCKASQ57DYDGDSYLNWYQQIPG
COR-L2 Frame-L3 614 AGCCACCCAAACTCCTCATCTATGATGCATCCAATCTAGTTTCTGGCACCCACC
196 Q P P K L L I Y D A S N L V S G I P P R F S G S G S G T D :
CDR+L3 Frame+L4
702 CACCOTCAACATCCATCCTGTGGAGAAGGTGGATGCTGCAACCTATCACTGTCAGCAAAGTACTGAGGATCCGTGGACGTTCGGTGGA
225 TENIHPVEKVDAATYHCQQSTEDPWTFGG
C kapoa Notl Linker 3 Pvull Frame-H1
790 GGCACCAAGCTGGAAATCAAA <u>CGGGCTGATGCT</u> GCGGCCGCTGGTGGCCCAGGGTCGCAGGTGCAGCAGCTGCAGCACTCTGGGCCTGAGCC 255 G T K L E I K R A D A A A A G G P G S Q V Q L Q Q S G A E I
VH anti-CD19 CDR-H1 Frame-H2
879 GGTGAGGCCTGGGTCCTCAGTGAAGATTTCCTGCAAGGCTTCTGGCTTATGCATTCAGTAGCTACTGGATGAACTGCGTGAACCAGAGC
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R
COR-H2
968 CTGGACAGGGTCTTGAGTGGATTGGACAGATTTGGCCTGGAGATGGTGATACTAACTA
314) PGQGLEWIGQIWPGDGDTNYNGKFKGKA
314) PGQGLEWIGQIWPGDGDTNYNGKFKGKA Frame-H3
314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGACGAATCCTCCAGCACGCTACATGCAACTCAGCACCTTAGCATCTCAGGACTCTGCGGTCTATTTCTGTGCAAGAC
314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGACGAATCCTCCAGCACGCCTACATGCAACTCAGCACCCTAGCATCTCAGGACTCTGCGGTCTATTTCTGTCAAGAC 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 CH1
314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGACGAATCCTCCAGCACGCTACATGCAACTCAGCACCTAGCATCTCAGGACTCTGCGGTCTATTTCTGTGCAAGAC 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R COR-H3 Frame-H4 CH1 1142 GGGAGACTACGGAGGGGTAGGCCGTTATTACTATGCTATGGACTACTGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAA
314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGACGAATCCTCCAGCACCCTACATGCAACTCAGCAGCCTAGCATCTGAGGACTCTGCGGTCTATTTCTGTCAAGAC 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R COR-H3 Frame-H4 CH1 1142 GGGAGACTACGACGGTAGGCCGTTATTACTATGCTATGGACTACTGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAA 372) R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K
314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGACGAATCCTCCAGCACGCTACATGCAACTCAGCACCTAGCATCTCAGGACTCTGCGGTCTATTTCTGTGCAAGAC 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R COR-H3 Frame-H4 CH1 1142 GGGAGACTACGGACGGTAGGCCGTTATTACTATGCTATG
314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGAGGAATCCTCCAGCACCCTACATGCAACTCAGCAGCCTAGGATCTGAGGACTCTGCGGTCTATTTCTGTGCAAGAG 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 Frame-H4 1142 GGGAGACTACGACGGTAGGCCGTTATTACTATGCTATGGACTACTGGGTCAAGGAACCTCAGTCACCGTCTCCCAGCCAAAA 372) R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3 1226 CAACACCCAAGCTTGGCGGTGATATGGCTCACCTCAGCCAATCATGCTCTCCAGCGAGAAAGGTCACCATGACCTGCA
314) P G Q G L E W I G Q I N P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGCGAACCCCTACACGCCTACATGCAACCCTAGCATCTGCGGACCTCGCGGTCTACTTCTGCAAGAG 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 1142 GGGAGACTACGACGGTAGGCCGTTATTACTATGCTATGGACTACTGCGGTCAACGGAACCTCAGTCACCGTCTCCCAGCCAAGA 372) R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3 1226 CAACACCCAAGCCTTGGGGGTGATATCGTCACTCACTCAC
314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGACGAACTCCTGCAGCACACCCTACATGCAACTCAGCAGCCTAGCATCTGAGGACTCTGCGGTGTATTTCTGCAAGAG 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 1142 GGGAGACTACGACGGTAGGCCGTTATTACTATGCTATGGACTACTGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAA 372) R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3 1226 CAACACCCAAGCTTGGGGTGATATGGCTCACCTCACTCCCAGCAATCATGCTCGATCTCCAGGGGAGAAGGTCACCTGCAA 400) T T P K L G G D I V L T Q S P A I M S A S P G E K V T M T C CDR-L1 Frame-L2 CDR-L2 1316 GTGCCAGCTCAAGGTGAAGTTACATGAACTGCTACCAAGGCACCACCACCAACAATCATGCCCCCAAAAAGATGCATTTATGACACATCCAACCAA
Trame-H3 1051 ACTCTGACTGCAGGGATACCTCCAGCACACCCTACATGCAACTCAGGCAGCCTAGGACTCTGCGGTCTATTTCTGCAAGAG 342 T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 1142 GGGAGACTACGACGGTAGGCGGTATTACTATGCTATGCATCTAGGACTCAGGACCTCAGTCACGGTCTCCTCAGCCAAAA Trame-H4 CH1 1142 GGGAGACTACGACGGTAGGCCGTTATTACTATGCTATGGACTACTGGGACTCAGGACCTCAGTCACCGTCTCCTCAGCCAAAA 372 R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3 1226 CAACACCCAACCTTGGCGGTGATATCGTCTCACTCAGTCTCCAGCAACCATCCAT
Frame-H3 1051 ACTCTGACTGCAGACGAATCCTCCAGCACACCCTACATGCAACTCAGCAGCCTAGCATCTGAGGACTCTGCGGTCTATTTCTGCAAGAG 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 1142 GGGAGACTACGAGGGTAGGCCGTTATTACTATGCTATGGACTACTGCGGTCAACGCCAACCTCAGCCAAAACCTCAGCCCAAAACCTCAGCCCAAAACCTCAGCCCAAAACCTCAGCCCAAAACCTCAGCCCAAAACCTCAGCCCAAAACCTCAGCCCAAAACCTCAGCCCAAAACCTCAGCCCCAAAACCTCAGCCCCAAACCTCAGCCCAACCTTGGGGGGTGATATCGTCCACCCAACCTCCAGCCAAACCTCCAGCCACCCTTGGCGGGGGGAAACGTCACCATGACCTCCAGCAACCTTGGGGGGTGATATCGTCCACCCAACCTTCCAGCGGAGAACGTCACCATGACCTCCAGCAACCTTGGGGGGTGATATCGTCCACCTCCAGCCAATCATGTCTCCAGCGGAGAACGTCACCATGACCTCCAGCAACCTTGCAGCGAGAACGTCACCATGACCTCCAGCAACCTTGCAGCAACGTCACCATGACCTCCAGCAACCTTGCAGCAACGTCACCATGACCTCCAGCAACCTTCCAGCAACAGTCAACCTTCCAGCAACATCATGACCTCCAGCAACCATCAACCTCCAGCAACGTCAACGATGAATTTATGACACATCCAACCAA
Frame-H3 1051 ACTCTGACTGCAGACGAATCCTCCAGCACACCCTACATGCAACTCAGCAGCCTAGCATCTGAGGACTCTGCGGTCTATTTCTGCAAGAG 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 1142 GGGAGACTACGAGGGTAGGCGTTATTACTATGCTATGGACTACTGGGACTCAGGACCTCAGGACCTCAGGCACCTCAGCCCAAAA 372) R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3 1226 CAACACCCAACCTTGGGGGTGATTACGGTCACTCAGGCACATCATGTCTCCAGGGAGAAGGTCACCATGACCTGCA 400) T T P K L G G D I V L T Q S P A I M S A S P G E K V T M T C CDR-L1 1316 GTGCCAGCTCAAGGTGAAGTTACATGAACTGGTACCAGGCACAACATCAGGCACACCTCCCCCAAAAGATGATTTATGACACATCCAG 430) S A S S S V S Y M N W Y Q Q K S G T S P K R W I Y D T S 3 Frame-L3 1401 ACTGGCTTCTGGAGTCCCTGCTCACTTCACGGGCAACCTTCTCACCAATCAGCGGCAATCATGGAGGCTGAAGATGGATG
Frame-H3 1051 ACTCTGACTGCAGACGAATCCTCCAGCACACCCTACATGCAACTCAGCACCCTAGCATCTGAGGACTCTGCGGTCTATTTCTGCAAGACGAGCAACCCTAGCACGCCTACATGCAACTCAGCACCCTAGCATCTGAGGACTCTGCGGTCTATTTCTGCAAGACGAGCAGCCTACATGCAACTCAGCACCCTAGCATCTGAGGACTCTGCGGTCTATTTCTGCAAGACGAACCTCAGCCCTAAGGAACCTCAGCCCTAACCACCCTCACCCCAAAACCTCAGCCCTAAACCATGCGCGAAACCTCAGCCCAAAACCTCAGCCCAAACCTTGGGGGGTGATATCGTGCTCACCCCACCCTCCAGCCAACCCTTGGGGGGTGATATCGTGCTCACCCAGCAATCATGCTCTCCAGCGGAGAAAGGTCACCATGACCTGCAACCTTGGGGGGTGATATCGTGCTCACCCAGCAATCATGCTCTCCAGCGGGAGAAGGTCACCATGACCTGCAACCTTGGGGGGTGATATCGTGCTCACCCAGCAATCATGCTCGCATCTCCCAGGGAGAAGGTCACCATGACCTGCAACCTTGGGGGGTGATATCGTGCTCACCAACCA
Frame-H3 1051 ACTCTGACTGCAGACGAATCCTCCAGCACACCCTACATGCAACTCAGCACCCTAGCATCTGCAGCACTCTGCGGTCTATTTCTGCAAGACGACGACGACTCTGCAGCACGACTCAGCACCCTACATGCAACTCAGCACCCTAGCATCTGCAGCACTCTGCGGTCTATTTCTGCAAGACGACGACGACGACGCTACATGCAACTCAGCACCCTAGCACCTCAGCAACCTCAGCAACCTCAGCCCAACACCTCAGCCCAACACCTCAGCCCAACACCTCAGCCCAACACCTCAGCCCAACACCTCAGCCCAACACCTCAGCCCAACACCTCAGCCCAACACCTCAGCCCAACACCTCAGCCCAACCCTCAGCCCAACCCTCAGCCCAACCCTCAGCCCACCCTCAGCCCAACCCTCAGCCCACCCTCAGCCCAACCCTCCAGCCAACCCTCCAGCCAACCCTCCCCCCAACCCTTGGCGGGTGATATCGTGCTCACCCTCCAGCCAACCATCCACCCAC
Frame-H3 1051 ACTCTGACTGCAGAGGAATCCTCCAGCACACCTACATGCAACTCAGCAGCCTAGGATCTGAGGACTCTGCGGTCTATTTCTGTGCAAGAG 342 T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R COR-H3 1142 GGGAGCTACGGGTAGGCCGTTATTACTATGCTATGCATCTCGGGTCAACGGAACCTCAGTCACCGTCTCCTCAGCCCAAAA 372 R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3 1226 CAACACCCAACCTTGGGGGTGATATCGTCTCAGTCACCTCAGCAATCATGCTCACCTCAGCAATCATGCTCAACCTAGACCTCCAGGGAAAGGTCACCATGACCTGCA 400 T T P K L G G D I V L T Q S P A I M S A S P G E K V T M T C CDR-L1 Frame-L2 CDR-L2 1316 GTGCCAGCTCAAGTTAAGTTACATGAACTGTACCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTATGACACATCCAA 430 S A S S S V S Y M N W Y Q Q X S G T S P X R W I Y D T S 3 Frame-L3 1401 ACTGGCTTCTGGAGTCCACCTCACCTCACGGCACCTCCTCCACCAATCAGCGCACTCCACCAACATCGACCTCCACCAATCAGCGCCACTCCACCAATCAGCGCCACTCCACCAATCAGCGCCACTCCACCTCCACCAATCAGCGCCACTCCACCAATCAGCGCCACTCCACCAATCAGCGCCACTCCACCAATCAGCGCCACTCCACCAATCAGCGCCACTCCACCAATCAGCGCCATGCACCTCCACAATCAGCGCCAATCAAT
Frame-L3 1051 ACTCTGACTGCAGACGATCCTCCAGCACACCTTACATGCAACTCAGCACCTTACATCTCAGGACTCTCCGGTCTATTTCTTCTCAACACGACTCTCCAGCACGACTCTCCAGCACCACCCTTACATGCAACTCAGCACCCTTACATCTCAGGACTCTCCGGTCTATTTCTTCTCCAAGACGACTCTCCGGTCTACTTCCTCCAGCACCCTTACATCTCAGCACCTTACATCTCAGGACTCTCCAGGCACCTCCTCCAGCCAACACCTCCAGCCACCTTCCTCCAGCCAAAACCTCCAGCTCACCCGTCTCCTCACCCCAAAACCTCCAGCTCACCGTCACCCTCCCCAAAACGAACCTCCAGCTCACCCTCCCCAAAACGAACCTCCAGCCAACCTCCACCACCACCTCCCCAAAAGATCACCTCCAACCATCCACCTCCACCAACCTCCACCAACCTCCACCA
1051 ACTUTGACTGCAGCGAATCCTCAGCAGCCTACATCCAGCGCACCCTACATCAGCACTCTCAGGGACTCTCCGGTCTATTTCTGTGCAAGAG 1051 ACTUTGACTGCAGCAGCGATCCTCAGCCCTACATCCACCCCTACATCCAGCCCTAGCATCTCAGGACTCTCCGGTCTATTTCTGTGCAAGAG 342
Frame-L3 1051 ACTCTGACTGCAGACGATCCTCCAGCACACCTTACATGCAACTCAGCACCTTACATCTCAGGACTCTCCGGTCTATTTCTTCTCAACACGACTCTCCAGCACGACTCTCCAGCACCACCCTTACATGCAACTCAGCACCCTTACATCTCAGGACTCTCCGGTCTATTTCTTCTCCAAGACGACTCTCCGGTCTACTTCCTCCAGCACCCTTACATCTCAGCACCTTACATCTCAGGACTCTCCAGGCACCTCCTCCAGCCAACACCTCCAGCCACCTTCCTCCAGCCAAAACCTCCAGCTCACCCGTCTCCTCACCCCAAAACCTCCAGCTCACCGTCACCCTCCCCAAAACGAACCTCCAGCTCACCCTCCCCAAAACGAACCTCCAGCCAACCTCCACCACCACCTCCCCAAAAGATCACCTCCAACCATCCACCTCCACCAACCTCCACCAACCTCCACCA

941 ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTAC

1 M R F P S I F T A V L F A A S S A L A A P V N T T

alpha-factor signal

1015 AACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGCGGATTTCGATG
25 T E D E T A Q I P A E A V I G Y S D L E G D F D

1089 TTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCT
50 V A V L P F S N S T N N G L L F I N T T I A S I A

EcoRI

XhoI

XhoI

THOS

4 K E E G V S L E K R E A E A E F Q V Q L Q Q S

VH anti-CD3

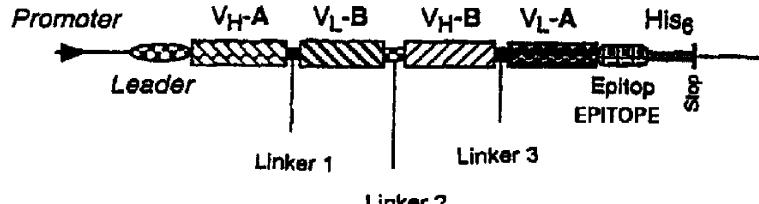
1234 TGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATTCCTGCAAGGCTTCT
98 G A E L A R P G A S V K M S C K A S

FIGURE 7

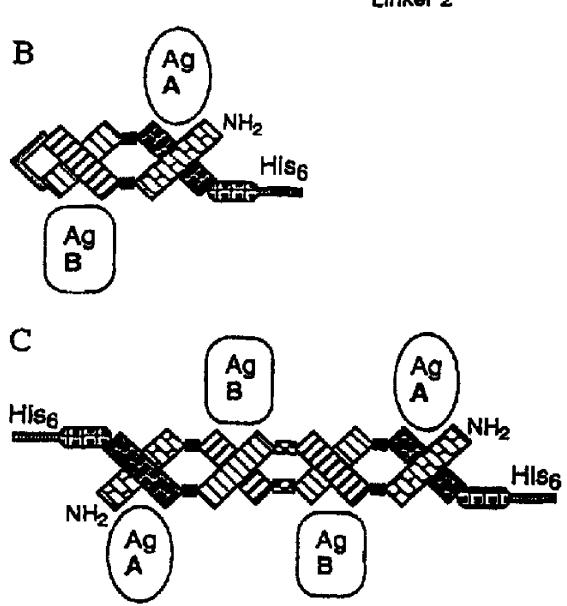
UNSCANNABLE ITEM

RECEIVED WITH THIS APPLICATION

(ITEM ON THE 10TH FLOOR ZONE 5 IN THE FILE PREPARATION SECTION)


DOCUMENT REÇU AVEC CETTE DEMANDE

NE POUVANT ÊTRE BALAYÉ


(DOCUMENT AU 10 IÈME ÉTAGE AIRE 5 DANS LA SECTION DE LA

PRÉPARATION DES DOSSIERS)

P1-2-3-4-9-10

Linker 2

